tel:027-87580888
phone:18971233215
fax:027-87580883
email:didareneng@163.com
address: Inside the China University of Geosciences, 388 Lumo Road, Hongshan District, Wuhan (Wuhan)
Investigation on fracture creation in hot dry rock geotherma
Autors:Zhou Zhou a, Yan Jin. et al.
Abstract: The abundant geothermal energy in hot dry rock (HDR) formations is an attractive renewable energy resource with great potential. China will develop its first HDR geothermal formation in the Gonghe Basin. HDR is a hard and low-permeability granite containing very few fluids. Development requires fluids to cyclically flow between injection and production wells to extract geothermal energy in the artificial heat transfer zone. Hydraulic fracturing is the main technology for creating flow paths. But few studies have investigated fractures in HDR geothermal formations. This paper investigated fractures as flow paths in HDR geothermal formations during hydraulic fracturing. Hydraulic fractures were simulated using a custom true-triaxial hydraulic fracturing test system in a realistic formation environment, in which a scaled wellbore was used that was built in outcrop granite rock from the Gonghe Basin. Fracture creation in granite was investigated via experiments, as well as influence factors, and what experience could be achieved. This study can be used to design and evaluate hydraulic fracturing projects in potential HDR geothermal formations.
source: Elsevier Ltd,2020,153.SCI
The interaction between artificial and natural fractures. (a) Artificial fractures propagating along natural fractures; (b) hydraulic fractures propagating across natural fractures.